Что устройство управляется силой вашей. OCZ NIA - управляй компьютером силой мысли! Neural Impulse Actuator

Американская корпорация Facebook впервые официально рассказала о методах, которые разрабатывает в области управления компьютером силой мысли. С докладом выступила Регина Дуган, возглавляющая в компании секретный отдел Building 8, занимающийся такими исследованиями. Идея в том, чтобы «записывать мысли напрямую» без применения периферийных устройств, пояснила она, выступая на конференции разработчиков под F8, организованной Facebook в Сан-Хосе (штат Калифорния). «Это кажется нереальным, но такое, вероятно, будет возможно раньше, чем вы предполагаете», - выразила уверенность Дуган.

По словам руководителя Building 8, компания надеется вскоре выпустить систему, позволяющую записывать силой мысли 100 слов в минуту, что в пять раз быстрее скорости набора текста на смартфоне. При этом Facebook стремится к тому, чтобы работа устройства не требовала вживления каких-либо элементов в тело человека. Во время выступления представитель социальной сети показала видеозапись, где парализованная женщина набирает текст силой мысли с помощью специального импланта. Глава Building 8 объяснила, что пока система позволяет набирать восемь слов в минуту.

В Facebook изучают возможность следить за активностью речевых центров в мозге молчащего человека и передавать информацию на компьютер с помощью особых датчиков. Дуган отметила, что компания не стремится создать систему, которая бы «расшифровывала случайные мысли людей». «Можно представить себе это так: вы много фотографируете, но не все снимки выкладываете. Также у вас много мыслей, но делитесь вы лишь некоторыми», - объяснила она.

В 2015 году основатель Facebook Марк Цукерберг (№5 в глобальном рейтинге миллиардеров по версии Forbes, состояние $56 млрд) утверждал, что будущее коммуникации вполне может стать «телепатия». «Однажды я верю, что мы сможем отправлять полностью оформленные мысли друг другу напрямую, используя технологии», - говорил он. «Вы просто сможете придумать что-то, и ваши друзья тут же смогут испытать это вместе с вами», - отмечал предприниматель.

Руководитель Building 8 рассказала также, что Facebook занимается также технологиями, которые позволили бы глухим воспринимать звуки. Компания тестирует метод преобразования звука в вибрацию и иные сигналы, которые пользователь ощущает кожей – «сложной системой нервов, которые передают данные в мозг». В ходе презентации Дуган показала запись, на которой мужчина, лишенный возможности говорить и видеть, общается при помощи устройств от Facebook.

Глава секретного подразделения Facebook ранее руководила Управлением перспективных исследовательских проектов министерства обороны США (DARPA). До апреля 2016 года она также управляла подразделением «Инновационных технологий и проектов» (ATAP) в Google, занимающимся разработкой инновационных технологий, пока ее не переманил основатель Facebook. В Google Дуган, в частности, отвечала за создание технологии построения 3D-модели пространства с помощью смартфона (проект Tango).

Израильские ученые из Университета имени Давида Бен-Гуриона в Негеве представили систему MindDesktop, которая позволяет взаимодействовать практически со всем интерфейсом операционной системы компьютера исключительно при помощи мыслей. Об этом пишет MIT Technology Review, препринт научной статьи с подробностями опубликован на arxiv.org.

Система основана на нейроинтерфейсе EPOC+ от компании Emotiv, который через анализ ЭЭГ способен распознавать сигналы мозга, связанные с конкретной мимикой. После обучения устройство также можно настроить на распознавание определенных образов – например, если пользователь думает о любимой песне или своем домашнем животном.

Ученые во главе с Ори Оссми (Ori Ossmy) разработали систему, в которой распознавание образов в EPOC+ является средством ввода для интерфейса по управлению компьютером. Подумав о каком-то образе, который ассоциирован с элементом интерфейса, пользователь, например, выбирает алфавит, затем нужный набор букв, а затем нужную букву для ввода текста.

Иерархия элементов интерфейса MindDesktop, которые пользователь выбирает силой мысли

По той же схеме нейроинтерфейс позволяет управлять курсором: чтобы запустить нужную программу: экран разделяется на четыре части, пользователь «силой мысли» выбирает нужную часть, которая затем разделяется на еще четыре части, и так далее вплоть до иконки программы.

Другие интерфейсы, как правило, используют для этих целей анализ мимики пользователя, однако это не всегда удобно – ввести букву, например, иногда получается только за минуту, отмечает издание. Система исследователей из Университета имени Давида Бен-Гуриона позволяет сократить это время до 20 секунд, говорится в статье ученых.

Система была протестирована на 17 испытуемых. После нескольких сессий обучения пользователи научились работать с нейроинтерфейсом заметно быстрее и смогли отправить с помощью него электронное письмо. Мужчины, однако, справлялись лучше, чем женщины – это объясняется длиной волос, которая влияла на эффективность нейроинтерфейса, отметили ученые.

Когда система может быть выпущена на рынок и будет ли выпущена вообще – не уточняется. Как отмечает издание, 20 секунд для ввода одной буквы – это все же довольно долго по сравнению с другими методами коммуникаций, и разработка более чувствительных нейроинтерфейсов может сократить этот разрыв.

Ранее нейроинтерфейс для набора текста на компьютере анонсировали в Facebook, также нейроинтерфейсами компания Илона Маска Neuralink и ряд других стартапов и научных коллективов по всему миру. В последние годы в этой области произошел заметный прогресс: недавно, к примеру, ученые устройство, которое может извлекать из мозга пользователей информацию, помогающую подбирать их пароли.

В середине прошлого века фантасты писали, что в будущем люди научатся управлять техникой одной лишь силой мысли. И вот это самое будущее наступило. Первые подобные устройства сейчас проходят стендовые испытания в Институте высшей нервной деятельности и нейрофизиологии(ИВНД и НФ) РАН.

Владимир Гаврилов

Заведующий Лабораторией физиологии сенсорных систем ИВНД и НФ РАН Игорь Шевелев подвел нас к тяжелой двери в локоть толщиной, с видимым усилием потянул ее на себя, и перед нами открылась святая святых. Стены небольшой комнаты сплошь покрыты металлической сеткой и звукопоглощающими экранами, ограждающими расположенную здесь аппаратуру от всевозможных электромагнитных помех. Посередине располагалось одинокое кресло с ворохом проводов, подключенных к мощным усилителям, прикрепленным у изголовья. «Любой человек, облаченный в специальный шлем, сидя вот здесь, способен с помощью мысли управлять компьютером, а через него разными механическими устройствами: роботами, манипуляторами и электрокарами, — пояснил Игорь Шевелев, хлопнув по потертому дерматину. — Но главное, при помощи мысли уже сейчас можно набирать текст на компьютере, что является настоящим прорывом в прикладной нейрофизиологии». Верилось, честно говоря, с трудом. Слишком уж абстрактная это вещь мысль, чтобы так просто ее уловить да еще и преобразовать в команды для компьютера, робота, электрокара…

На заре компьютерной эры

Идея об управлении машиной одной лишь силой мысли зародилась в середине ХХ века, когда для изучения деятельности мозга стали широко применяться электроэнцефалографы (ЭЭГ). Первым человеком, реализовавшим ее на практике, стал англичанин Эдмонд Деван. В 1967 году в Кембридже он провел серию экспериментов, в ходе которых люди, подключенные к аппаратуре ЭЭГ, учились контролировать амплитуду мозгового альфа-ритма. Испытуемые самостоятельно, то расслабляясь, то возбуждаясь, передавали сигналы, преобразовываемые компьютером в точки или тире, складывающиеся в азбуку Морзе. Вполне закономерно, что первым словом, мысленно переданным на телетайп, стало слово «кибернетика».

Идею тут же подхватили военные. В начале 1970-х годов американское Агентство перспективных оборонных разработок (Defense Advanced Research Projects Agency — DARPA) объявило о начале работ по созданию — ни много ни мало — истребителя, управляемого одной лишь силой мысли. К исследованию подключились ведущие научные организации США. Разрабатывались системы, дававшие возможность летчику, не отвлекаясь от управления самолетом, включать и выключать ряд функций авионики. К сожалению, низкий уровень тогдашних технологий не позволил довести начатую работу до конца. Компьютеры и другие электронные приборы были слишком велики для размещения на самолетах, да и производительность их заставляла желать лучшего. Программа была свернута.

Вспомнили о ней ученые только в 90-е годы ХХ века, когда новые разработки в электронике и компьютерной технике позволили вернуться к созданию интерфейса мозг-компьютер (Brain-Computer Interface — BCI) на качественно новом уровне. В настоящее время подобные системы активно конструируются в США, Германии, Японии, Китае, России и других странах.

Люди-киборги

В 1998 году сразу в двух точках земного шара — университете Эмори (США) и Тюбингенском университете (Германия) — были поставлены практически идентичные эксперименты. Мужчине, парализованному после инсульта, прямо в мозг были имплантированы микроэлектроды, при помощи которых компьютер измерял электрические импульсы мозга и преобразовывал их в команды для управления курсором. Больной представлял, что двигает правой или левой рукой, и курсор на экране монитора перемещался в ту или иную сторону. Выбирая на экране из заранее подготовленного списка различные фразы, инвалид мог позвать медицинскую сестру, попросить пить или есть, а также включить или выключить телевизор.

Функциональность этого устройства навела ученых на мысль попробовать изготовить механические протезы, управляемые мозгом посредством вживленных в него электродов.

Наибольшую известность получил эксперимент, проведенный в 2001 году в США Мигелем Николелисом из университета Дюка. Внедрив в мозг обезьяны несколько электродов, он добился поразительной синхронизации движения настоящей руки животного и ее роботизированного аналога. Стоило мартышке сжать в своей руке игрушку, как киберрука в точности повторяла ее жест.

Дальнейшее продолжение эти исследования получили в опытах нейрохирурга Джона Донога из университета Брауна (США). В 2002 году он провел интересный эксперимент с обезьянами. Животных научили играть в компьютерную игру, в ходе которой одним круглым мячом на экране компьютера надо было поймать другой. В эксперименте участвовали три обезьянки, в мозг которых была вживлена система электродов, измеряющих активность тех его областей, которые отвечали за работу рук. Сначала животные пользовались джойстиками, но вскоре их отключили, и компьютер стал читать сигналы мозга, снимаемые с внутричерепных электродов. Ни о чем не подозревающие животные продолжали играть, а мячик все так же двигался по экрану без всяких задержек. Получалось, что обезьяны управляли им при помощи одних лишь мыслей.

Но дальше всех пошла американская компания Cyberkinetics. Весной 2005 года она успешно завершила многолетние испытания чипов-имплантатов BrainGate («Ворота в мозг»), призванных облегчить жизнь парализованным пациентам.

Первым человеком, в мозг которого был вживлен чудо-чип, стал Мэттью Нейгл. 25-летнего американца полностью парализовало в 2001 году в результате ножевого ранения в шею. До сих пор он не может дышать без респиратора и передвигается исключительно в инвалидной коляске. Однако благодаря профессору Джону Донахью, возглавляющему кафедру нейрофизиологии медицинского факультета университета Брауна (США), у него появилась возможность существенно улучшить качество своей жизни. В ходе трехчасовой операции в мозг Нейгла было вживлено несколько электродов, которые располагались над моторными сенсорами коры головного мозга, где как раз и возникают сигналы, контролирующие движение рук. На последнем этапе операции на голове Нейгла было закреплено специальное металлическое устройство, позволявшее чипу передавать информацию на компьютер. Сначала пациент просто учился двигать курсор по экрану компьютера, мысленно представляя, что он пользуется руками, и весьма в этом преуспел. На сегодняшний день он уже умеет включать и выключать телевизор, подсоединенный к компьютеру, двигать роботизированной рукой. Первый эксперимент оказался столь удачным, что весной 2004 года Управление по контролю за пищевыми продуктами и лекарственными препаратами США (Food and Drug Administration — FDA) дало добро на широкое применение BrainGate в медицинской практике. Cyberkinetics уже вложила в проект BrainGate $9 млн., в 2007—2008 годах она собирается вывести готовый продукт на рынок.

Волшебный шлем и печатная машинка

Впрочем, далеко не все пациенты согласны на то, чтобы в их черепную коробку засовывали электроды. В настоящее время ученые разных стран бьются над созданием интерфейса, улавливающего сигналы мозга без непосредственного контакта с ним. По этому пути пошли и российские исследователи из НИИ высшей нервной деятельности и нейрофизиологии РАН, получившие грант на исследования от отечественной инновационной компании BiNeuro.

«Мы работаем над системой ВСI всего полтора года, но уже добились хороших результатов, — рассказывает Игорь Шевелев. — Разработанное нами оборудование считывает потенциалы мозга через систему электродов, закрепленных на специальном шлеме. Это обычный шлем энцефалографа. Через шлейфы проводов он подключается к мощным усилителям, которые, в свою очередь, передают обработанные сигналы в компьютер. Весь секрет заключен в программном обеспечении, распознающем биопотенциалы мозга и способном подстраиваться во время работы к особенностям мышления того или иного человека. Более совершенное распознавание мысленных образов позволяет не только отдавать компьютеру простейшие команды, но и печатать текст на экране монитора с помощью одной только мысли».

«В основном для испытаний комплекса мы привлекаем студентов, — вступает в беседу ведущий специалист проекта Владимир Конышев. — Раньше пытались приглашать своих сотрудников или специалистов из соседних отделов. Но они оказались ‘слишком умными". Дело в том, что ученые, садясь в кресло, думают не о мысленном управлении, а о том, как все это работает. В итоге результаты экспериментов смазываются. Студентам же наплевать на все эти железки. Провел сеанс, получил деньги — и гуляй, Вася».

Одним из таких испытателей-студентов как раз и является долговязый третьекурсник Иван. Пока мы разговариваем с руководителями проекта, лаборанты начинают крепить к его голове матерчатый шлем с множеством датчиков. Процедура весьма трудоемкая. При помощи специального шприца кожа в местах соприкосновения электродов с головой смазывается гелем, снижающим сопротивление при прохождении сигналов. Спустя полчаса Ивана, закутанного, словно младенец, в чепец, торжественно водружают в кресло испытателя, и он начинает напряженно всматриваться в монитор. Эксперимент начался! На экране — ровные столбики из букв русского алфавита. Время от времени по ним пробегают вертикальные и горизонтальные зеленые полосы, засвечивающие столбцы или строки. Как только испытатель видит на экране загаданную букву, в его мозгу возникает характерная картина волн, которую и регистрируют датчики. Компьютер обрабатывает полученную информацию и выводит загаданную букву на соседний монитор.

Примерно такую же «мысленную печатающую машинку» в марте этого года представили на CEBIT (выставке высоких технологий, ежегодно проходящей в Ганновере) специалисты из Института Фраунхоффера (Германия). Принцип действия тот же, что и у россиян, но интерфейс немного отличается. Экран монитора разбит на шесть шестиугольных «сот», расположенных по кругу, в каждой из которых содержится группа букв. Человек мысленно подводит стрелку курсора к нужной «соте» и отдает команду «выбор». В этот момент «сота» увеличивается на весь экран, и буквы выстраиваются по кругу, как в обычных механических часах. Вращая между ними стрелку, можно отметить нужный символ. При этом человек мысленно не загадывает букву, как в российском прототипе устройства, а только выбирает ее при помощи более примитивного алгоритма действий. Чтобы перемещать курсор вправо или влево, оператор представляет, что двигает правой или левой рукой.

Каковы же перспективы таких систем? Могут ли они реально конкурировать с обычными способами управления компьютерной техникой посредством кнопок, клавиатуры, джойстиков или мышки? Ученые утверждают, что в будущем это вполне возможно, а в некоторых областях применения подобный интерфейс станет просто незаменим. Между тем, функциональность первых аппаратов пока остается не на высоте: набор слова из четырех букв занимает примерно 2−3 минуты. «Конечно, по сравнению с обычной пишущей машинкой или ноутбуком это показатели не очень хорошие, — вздыхает Игорь Шевелев. — Обычному человеку проще пользоваться давно проверенными устройствами. Но для инвалидов с параличом рук и ног они недоступны. Возможность печатать текст и даже управлять компьютером напрямую через мозг для них может стать настоящим спасением. И две минуты для набора одного слова не покажутся им очень медленными».

Коляска на мысленном управлении

Область применения систем ВСI не ограничивается только набором текста. В недалеком будущем с их помощью можно будет управлять массой механических устройств (инвалидная коляска, примитивные роботы, манипуляторы), интегрированных с компьютером. Реализовать эти возможности не столь уж и сложно. Для передвижения инвалидной коляски требуется всего пять команд: «вперед», «назад», «вправо», «влево» и «стоп». Мысленно ориентироваться в них гораздо проще, чем в трех десятках букв и знаков препинания.

Еще зимой 2003 года швейцарские ученые из Федерального технологического института и испанские специалисты из Центра биомедицинских инженерных исследований в Барселоне приступили к разработке подобной инвалидной коляски. Испытания первых прототипов показали, что научиться управлению данным прибором можно буквально за пару дней. Но в процессе работы инженеры столкнулись с неожиданной трудностью.

«Сейчас достоверность распознавания мысленных команд машиной приближается к 96%, рассказывает Игорь Шевелев. — Однако этот результат не считается достаточно приемлемым. Получается, что каждая тридцатая команда может быть понята компьютером неверно. При наборе текста это не так страшно, а вот при управлении инвалидной коляской любая ошибка может иметь катастрофические последствия. Представьте, что будет, если инвалид, подкатив к краю котлована, отдаст мысленную команду ехать назад, а коляска вдруг рванет вперед, в пропасть. Поэтому использовать коляску для передвижения пока нельзя».

Инженеры стремятся довести вероятность правильного распознавания до 100%. В некоторых экспериментах, проводимых исследовательской группой Игоря Шевелева, подобных результатов достичь уже удавалось. И по всей вероятности, в течение последующих пяти лет «мысленные инвалидные коляски», а также иные аппаратно-програмные комплексы на основе систем ВСI, как иностранного, так и российского производства, появятся в продаже. По прогнозам компании Cyberkinetics, рынок ВСI оценивается примерно в $2 млрд.

Что наша жизнь? Игра!

Принципы мысленного управления электронными устройствами можно применять не только для облегчения жизни инвалидов, но и для обучения и развития детей, а также просто для развлечения.

Весной 2003 года исследователи из шведского Интерактивного института представили вниманию публики игру Mindball, или «Мозгобол», в которую можно играть с помощью мысленных команд. Два человека в «телепатических» банданах сидят за столом, под которым размещены мощные электромагниты, и стараются закатить металлический шар в ворота противника. Система регистрирует альфа- и тета-волны в мозгу игроков. Побеждает тот, кто сумеет лучше расслабиться. Для большей зрелищности электроэнцефалограммы игроков выводятся на большие мониторы. Созданная при институте фирма Interactive Producline уже запустила Mindball в продажу и предлагает ее всем желающим по цене $19 000 за комплект.

Инженеры же из лаборатории «Музыка будущего» Плимутского университета (Великобритания) пошли еще дальше и объявили о том, что с помощью их оборудования можно мысленно писать музыку. Правда, пока оно способно распознавать только самые примитивные мелодии.

«Сейчас технологии компьютерного анализа электрической активности мозга развиваются столь стремительно, что уже в скором времени мы станем свидетелями рождения устройств более сложного характера, способных не только распознавать мысленные команды, но и определять, о чем думает человек в тот или иной момент, — утверждает руководитель Лаборатории высшей нервной деятельности человека ИВНД и НФ РАН Алексей Иваницкий. — Изучается возможность использования электроэнцефалограммы (ЭЭГ) мозга для оценки типа решаемой человеком мыслительной задачи. Такие комплексы могут применяться для контроля за мышлением летчиков или космонавтов во время сложных маневров».

И кто знает, возможно, появление на свет таких устройств ознаменует начало новой эры в науке. Чужая душа перестанет быть потемками, внутренний мир человека превратится в открытую книгу, которую можно будет читать при помощи компьютеров. Ну а человечество приблизится к обладанию телепатией, правда, в усеченном, электро-техногенном варианте.

Экзоскелеты, механические руки, глаза-камеры и уши-микрофоны, передача мысли от мозга к мозгу - всё это уже реальность, возникшая на наших глазах в последние 15-20 лет. Технологии пока несовершенны, а некоторые - принципиально несовершенны на нашем уровне знаний. Однако первый удар по мячу на чемпионате мира по футболу в 2014 году нанёс человек с парализованными ногами. И пусть это выглядело не особенно впечатляюще, но человек управлял механической конечностью, и управлял мысленно.

История началась в 60-е годы прошлого века, когда в нескольких лабораториях стали работать с имплантированными в мозги обезьян и людей электродами. Человек с таким имплантатом нажимал на кнопку, меняя слайды в проекторе. Затем кнопку от проектора отсоединяли, но слайды продолжали переключаться по сигналу. В это же время начались работы по восстановлению слуха глухих через микрофон, совмещённый со слуховым нервом. Но настоящий прорыв лет назад, когда появились достаточно мощные компьютеры и новые алгоритмы.

Как работают нейроинтерфейсы, нам рассказал Александр Каплан, руководитель лаборатории нейрофизиологии и нейрокомпьютерных интерфейсов МГУ им. М.В. Ломоносова.

Читает ли компьютер мысли?

В интерфейсе "мозг - компьютер" нет ничего мистического, - говорит Каплан. - Технология позволяет регистрировать электрическую активность мозга и преобразовывать её в команды для внешних исполнительных систем. Мозг спрятан глубоко в черепе, но электрические поля, создаваемые нервными клетками, пробиваются через кости, мышцы, кожу и улавливаются электродами на кожной поверхности головы. Это хорошо всем знакомый метод электроэнцефалографии - нет такой поликлиники, где бы он ни применялся для диагностики. Мы в лаборатории тоже занимались диагностикой, но в какой-то момент мне стало интересно: а почему бы этот сигнал не послать на какое-нибудь внешнее устройство, чтобы управлять им?

Когда мы управляем руками, мы их видим и ощущаем, но электрических полей в голове мы не чувствуем. Оказалось, что этому можно научиться: на экране компьютера испытуемому показывают активность мозга и просят так или иначе изменить её. Постепенно у него начинает получаться. Отсюда уже недалеко до нейроинтерфейса, нужно лишь послать изменение ритма на внешнее устройство.

Что можно сделать? Ну, конечно, игрушки - они есть уже сейчас. Например, человек управляет игрушечной машинкой, изменяя активность мозга, - рассказывает Каплан. - Задаёт ей повороты. А наша задача - вычленить те самые сигналы мозга, составить нужный алгоритм. Ошибок должно быть как можно меньше, а время распознавания сигнала как можно короче. Если с момента, когда ребёнок задумал повернуть машинку, до самого действия проходит полчаса, какая уж тут игра!

Лучше всего спонсируются медицинские применения. И, надо сказать, интерфейс "мозг - компьютер" там нужнее всего. Например, есть постинсультные пациенты, которые не могут говорить и находятся в таком состоянии годами. Что делаем? Рисуем на экране компьютера матрицу, где в каждой клеточке написана буква. Клеточки мигают по очереди со скоростью 5-6 помигиваний в секунду. А в это время компьютер показывает энцефалограмму: если какая-то буква заинтересовала человека, реакция будет сильнее. Мы детектируем внимание и печатаем букву. Сейчас, по словам учёного, в его лаборатории скорость распознавания сигнала - примерно 8-10 букв в минуту, а безошибочных попаданий 95%.

Такой аппарат уже год тестируется в Первой градской больнице. Человек может общаться с помощью интерфейса, но пока медленно. В разработке - выход в интернет усилием мысли.

То же самое с парализованными пациентами, которые научились управлять инвалидным креслом, да и механическим экзоскелетом, если вспомнить первый удар на ЧМ-2014.

Есть и другой способ расшифровать намерения мозга - вживить в него электроды. В мозг втыкается пластинка, усеянная иголочками. Сама пластинка очень маленькая, примерно пять на пять миллиметров, а иголочек в ней около сотни. Это электроды, которые регистрируют электрическую активность отдельных нервных клеток в том месте, куда воткнуты. На голове есть разъём, который связывает по проводам мозг с компьютером и дальше - с внешним устройством. Уже есть пациенты, несколько человек, которые хорошо двигают, например, механической рукой: в эксперименте 2012 года женщина манипулятором берёт чашку кофе, шоколадку со стола, подносит её ко рту. Эта технология более чувствительна: электрод на коже снимает сигнал со 100-300 тысяч клеток, а здесь с каждого нейрона.

При имплантации такой пластины медику не требуется попасть точно в то место, которое управляет руками здорового человека. Достаточно воткнуть электрод в зону коры, которая в целом отвечает за подобные действия, а мозг сам разберётся, какие сигналы ему посылать. Такой вот он, мозг, умный.

Недавно прошло сообщение, что американцы собираются таким образом управлять самолётом. Реально ли это?

Реально. Только самолёты будут падать, - объясняет Каплан. - Кто ж возьмётся управлять летательным аппаратом, если сигнал распознаётся через полторы - две секунды, да ещё с пятью процентами ошибок? Пока я не видел подобных разработок.

Как почувствовать механическую руку?

Одно дело - приказать механизму, совсем другое - получить от него обратную связь. Например, ощутить механической рукой шершавость поверхности, почувствовать, куда едет игрушечная машинка, увидеть картинку с телекамеры так, будто это твой собственный глаз. Здесь успехи киборгизации скромнее, но они есть.

Во-первых, обезьянам пробовали вживлять электроды не только в то место, откуда идёт сигнал, но и в сенсорную кору, которая связана с ощущениями. А на механической руке были датчики, распознающие текстуру предмета. И обезьяны уверенно отличали шероховатые поверхности от гладких.

Во-вторых, можно обучить мозг получать сигнал об успешности действия:

Допустим, человек управляет машиной на мониторе компьютера. Если он делает успешный поворот, то в сенсорную кору его мозга поступает сигнал с частотой 10 герц, а если неверно - 30. Таким образом мозг понимает, правильно он действует или нет. И человек с закрытыми глазами может регулировать активность мозга и управлять механизмом, - рассказывает Каплан.

В-третьих, сенсорные датчики уже используются. Например, в видеокамерах для слепых. Конечно, мозг не получает столь же детальную информацию, как от живого глаза, потому что в сетчатке 126 миллионов чувствительных единиц - в компьютерном мире это называется пикселями. У настоящего глаза каждый такой пиксель имеет выход в мозг. Столько проводов от камеры внутрь головы не проведёшь.

В природе не предусмотрена встреча со 126-мегапиксельными камерами, - говорит Каплан. - И пока нет соображений, как это сделать искусственно.

Но даже 400 входов уже позволяют слепому "видеть" препятствия и ориентироваться.

Когда мозг сольётся с компьютером?

Год назад появилось сообщение, что через интерфейс "мозг - компьютер" один человек передал слово "привет" другому. Оба были в специальных шапочках. Можно ли научиться передавать не только отдельные слова, но и связные мысли? Или вообще подключить мозг к компьютеру настолько, чтобы человек, допустим, видел панораму Манхэттена чужими глазами, то есть камерами, а сам находился в Ростове? И ещё управлял этими "глазами"? Где предел технологии?

Если бы мы научились транслировать тексты в мозг, это было бы очень круто, - говорит Каплан. - Такие опыты проводят уже лет шестьдесят, с тех пор как в человеческий мозг начали вживлять электроды, но пока результатов нет. Если в алфавите 33 буквы, вы должны стимулировать мозг в 33 местах. И человек не просто должен понимать, что идёт стимуляция, но и распознать конкретное место. Неизвестно, как это сделать.

Такая же проблема и с виртуальным Манхэттеном. Проблема расшифровки. Понятно, что 126 миллионов электродов в мозг не затолкать, но, может быть, мы сумеем стимулировать его по небольшому числу каналов какими-то специальными способами?

Для этого нужно расшифровать весь информационно-аналитический процесс, который идёт в голове, - объясняет Каплан. - Как контактирует компьютер с, допустим, флешкой? Они подогнаны друг к другу, одни и те же инженеры сделали и флешку, и компьютер. А здесь ситуация другая: одни инженеры - высокого класса - сделали мозг, другие - поделки вроде нейроинтерфейса. И вот они пытаются их совместить, хотя не знают ни кодов, ни формата, ни где что хранится… В этом вопросе я скептик.

Мозг гораздо сложнее компьютера. Самый совершенный процессор содержит два миллиарда операционных единиц, а мозг - миллион миллиардов. Это контакты между нервными клетками. Из анатомии известно, что самих клеток 86 миллиардов и на каждую приходится примерно 15 тысяч контактов.

К тому же мозг очень пластичен: вчера здесь проходили импульсы, а сегодня нет. Так что полная виртуальность пока откладывается. Но начало положено: мы уже умеем отличать свет от тени через камеру.

Гибрид живого организма и электронного устройства. Любого пациента с имплантированным кардиостимулятором можно считать киборгом. Но лишь в последние несколько лет учёные нашли способы гибридизировать мозг человека и машину.

Системы "мозг - компьютер"

Развитие нейроинтерфейсов стимулировали в первую очередь работы учёного бразильского происхождения Мигеля Николелиса, опубликованные на рубеже 1990-х и 2000-х годов. Он создал системы управления механической рукой (управляла обезьяна) и восприятия тактильных ощущений. Так в этой области наметились два конкурирующих исследовательских направления.

Сегодня интерфейсы бывают двух типов: инвазивные и неинвазивные. Первые отмечают электрическую активность мозга и передают её на компьютер напрямую, через имплантированные в мозг электроды. Вторые расшифровывают сигналы энцефалограммы.

Есть учёные, вживившие электроды в свой мозг.

ри имплантации электродной матрицы некоторые нервные клетки разрушаются. Но это микроскопические нарушения, некритичные для мозга.

Экспериментальные нейроинтерфейсы

В 1963 году американский кибернетик и нейрофизиолог Грей Уолтер поставил эксперимент, в котором впервые был использован интерфейс "мозг - компьютер". "Пациентам по медицинским показаниям были имплантированы электроды в различные области коры мозга. Им предлагалось переключать слайды проектора, нажимая на кнопку. Обнаружив область коры, ответственную за воспроизведение этого мышечного паттерна, исследователь подключил её напрямую к проектору. Пациенты нажимали на отсоединённую кнопку, но слайды продолжали переключаться: управление осуществлялось непосредственно мозгом, причём даже быстрее, чем человек успевал нажать на кнопку", - пишут О. Левицкая и М. Лебедев в монографии "Интерфейс мозг - компьютер: будущее в настоящем".

Ни для кого не секрет, что устройства ввода – самый консервативный тип компьютерной периферии. Например, те же клавиатуры так и не обзавелись за годы эволюции ничем новым, кроме дополнительных кнопок и новых материалов корпуса. Мыши тоже не претерпели серьезных изменений за последние несколько лет – разве что механику сменила более точная оптика. Что касается чисто игровых манипуляторов, то здесь прогресс более заметен. Разные модели ориентированы на конкретные типы игр, а некоторые даже получили обратную связь, дающую ощущение отдачи от выстрела. Кроме того, рынок заполонили рули с педалями для автосимуляторов, пистолеты и даже «джедайские» мечи! Впрочем, уже сегодня ситуация начинает меняться. Появление в массовом производстве недорогих акселерометров, выполненных в виде миниатюрных микросхем, позволило производителям начать разработку принципиально новых манипуляторов, реагирующих на изменение пространственного положения. Такие манипуляторы позволяют заменить нажатие кнопок простыми жестам – гораздо более естественными для человека. Однако некоторые разработчики зашли по этому пути гораздо дальше – они занимаются созданием нейроманипуляторов. Мечта всех фантастов – управление машинами силой мысли – до недавнего времени казалась если и осуществимой, то лишь в отдаленном будущем. Тем не менее, на простейшем уровне управление мыслями возможно уже сегодня…

Немного теории

Далеко не все знают, что фраза «Мысль материальна!» на самом деле совсем недалека от истины. Наверняка каждый из наших читателей видел электроэнцефалограмму мозга (ЭЭГ), но откуда именно берутся эти волнообразные графики, знают далеко не все. Между тем, все очень просто: по нейронным связям мозга текут электрические токи, а мозг при этом испускает слабые электрические импульсы, которые давно уже научились обнаруживать и фиксировать. Эти импульсы представляют себой разночастотные колебания электрического потенциала. Характеристики этих ритмов или волн могут немало рассказать о заболеваниях нервной системы, но это тема отдельной беседы. Для нас прежде всего важен тот факт, что мысль действительно можно превратить в сигнал для осуществления того или иного действия. Хотя бы на уровне примитивного «да/нет». Более подробные исследования выявили у человека несколько групп волн, различающихся частотным диапазоном и возникающих в разных состояниях работы мозга. Так, различают следующие группы ритмических колебаний: Альфа-ритмы. Это колебания потенциала в диапазоне частот 8-13 Гц. Они возникают, когда мы отдыхаем, расслабляемся и как будто бы ни о чем не думаем. Часто можно слышать, что эти волны возникают, когда человек находится в состоянии медитации. Как только активность мозга увеличивается, альфа-ритмы сменяются бета-ритмами. Бета-ритмы. Это колебания потенциала в диапазоне частот от 14 Гц и выше. Перьевые самописцы, применяющиеся при снятии ЭЭГ, имеют предел фиксирования 35 Гц, поэтому часто можно слышать, что бета-ритмы ограничиваются именно этой частотой, хотя это не совсем так. Эти волны возникают во время физической и умственной активности, когда вы сосредоточены и напряжены. Блокируются бета-ритмы при тактильном раздражении, а также при движении конечностей в противоположных направлениях. Также различают гамма-ритмы (колебания потенциала с частотой выше 35 Гц, являющиеся фактически теми же бета-ритмами), дельта-ритмы (колебания потенциала с частотой 1-3,5 Гц) и тета-ритмы (колебания потенциала с частотой 4-7 Гц). Два последних типа волн возникают во время сна. Но не будем углубляться в дальнейшее изучение вопроса о ритмах мозга, а перейдем к изучению того устройства, которое попало сегодня к нам в тестовую лабораторию.

История создания

Итак, у нас на столе совершенно удивительный компактный прибор - по внешнему виду настоящий «черный ящик»! Как вы уже догадались, изготовлено это устройство американской компанией OCZ Technology , хорошо знакомой нашим читателям как изготовитель модулей памяти. Впрочем, при детальном изучении устройства становится понятно, что разработана новинка вовсе не OCZ Technology. История манипулятора NIA (Neural Impulse Actuator) корнями уходит к другой американской компании – Brain Actuated Technologies, Inc , поставляющей на рынок продукцию под маркой Brainfingers. Эта компания после проведения ряда собственных исследований создала уникальное устройство Brainfingers System, по своей сути похожее на OCZ NIA, но обладающее большими возможностями за счет большего количества датчиков, более функционального ПО и ряда других особенностей. Лишь одна особенность мешает этому устройству пробиться на массовый рынок. Как вы, наверное, догадываетесь – это его стоимость, составляющая $2100. Кроме того, Brain Actuated Technologies предъявляет к эксплуатации своего изделия более серьезные требования, заключающиеся в регулярной покупке расходных материалов, к числу которых отностяся даже внешние датчики. Но самое интересное отличие Brainfingers System от OCZ NIA заключается в возможности приобрести пакет SDK (Software Developer’s Kit) с наглядными примерами собственных приложений на C++ и VB6, позволяющий существенно расширить возможности устройства под свои цели и задачи. OCZ Technology, по всей видимости, взялась подготовить более коммерчески успешную версию устройства. Компания на порядок снизила цену, существенно сократив возможности устройства, обеспечила приятный дизайн и избавила потенциального пользователя от необходимости заменять расходные части. Впрочем, возможно OCZ Technology вообще ничего, кроме коробки к этому устройству не делала, а взялась лишь за «раскручивание» новинки под своим громким именем. Так или иначе, но манипулятор NIA добрался до серийного производства, и, как говорил известный литературный герой, «отвертеться от этого факта невозможно». Основная целевая аудитория NIA – это геймеры, хотя изначально прибор ориентирован и на массового пользователя, в том числе и на инвалидов.

Потенциальные возможности

Название Neural Impulse Actuator говорит о том, что устройство является преобразователем электрических импульсов мозга в команды, пепредаваемые в компьютер через драйвера и ПО. Но первое, с чем придется столкнуться пользователю – это управление не мыслями, а мимикой - мышцами лица. Для того, чтобы научиться управлять ритмами мозга, потребуется довольно продолжительное время, а, к примеру, щелкать зубами для выстрела в игре, сможет каждый и сразу. Именно поэтому производитель и добавил в NIA этот вид управления, никак не связанный с названием устройства. Следующий вид управления, реализованный в NIA, основан на слежении за взглядом пользователя. Нет, в данном случае речь не идет о видеокамерах или активных дисплеях, вроде применяемых в современных истребителях для наведения на цель. Все проще – устройство не переносит курсор туда, куда вы посмотрите, а лишь осуществляет какое-либо запрограммированное действие при отклонении взгляда в ту или иную сторону. Третий, самый интересный на наш взгяд способ управления основан на регистрации колебаний электрического потенциала, возникающего в нейронных связях, конкретно – на регистрации альфа- и бета-ритмов. Мы не просто так рассказали выше о том, когда именно проявляют себя те или иные волны. Эти знания важны не только для понимания сути процессов, но еще и для самообучения. К примеру, если настроить управление одними лишь альфа-ритмами, но при этом находиться в сосредоточенном состоянии, то ничего хорошего из этого не получится. В лучшем случае виртуальный игровой персонаж не сдвинется с места. Примечательно, что все эти три способа управления можно комбинировать между собой. К примеру, можно заставить персонаж в игре двигаться с помощью мимики, вращаться с помощью взгляда, менять оружие с помощью мозговых волн. Сразу нужно оговориться – интерфейс фирменного ПО NIA ориентирован на игры. Пользоваться устройством, как мышкой (открывать/закрывать окна или даже путешествовать по интернет-сайтам) тоже можно – достаточно лишь настроить нужным образом новый профиль. Но в силу ряда особенностей, о которых будет рассказано ниже, такой способ управления не слишком оперативен и не очень удобен, а потому он и не выделяется производителем как приоритетный.

Комплектация и настройка

Красивая белая картонная коробка с магнитной застежкой и мягкий наполнитель с выемками в форме уложенных в него аксессуаров, недвусмысленно намекают на то, что перед нами устройство класса Hi-End.

Коробка пестрит перечислениями возможностей и характеристик, однако вся эта информация исключительно на английском языке. Русскоговорящие пользователи смогут узнать лишь то, что в руках они держат «инновационное игровое устройство, которое переводит электрические биосигналы в компьютерные команды».

К сожалению, та же ситуация и с инструкцией. Согласитесь, подобное устройство – это не сотовый телефон и не мышь – чтение и понимание инструкции по эксплуатации в данном случае просто необходимо. Однако, мы нашли решение этой проблемы. На интернет-форуме магазина Xmemory , представляющего новинку на российском рынке, доступна для скачивания ссылка на русскоязычный вариант инструкции. Скачать инструкцию в формате PDF можно . Возможно, в скором времени в коробках с устройством появится и бумажный вариант инструкции на русском языке. Но не спешите радоваться. Даже после того, как вы прочитаете инструкцию от корки до корки, у вас наверняка останется сотня-другая вопросов к производителю. К примеру, как именно тренировать мозг для излучения «правильных» альфа- и бета-волн. Более того, в инструкции и слова не сказано о том, что эти волны из себя представляют и при каких условиях возникают. В то время как в руководству к аналогичному, но значительно более функциональному манипулятору Brainfingers System описаны и теоретические основы, и методы освоения. Кроме инструкции в коробке с устройством был найден диск с ПО, интерфейсный кабель USB A-B, а также налобный ободок с датчиками.

Внешний вид

Устройство представляет собой небольшую черную коробочку, изготовленную из толстостенного алюминия.

Корпус выполнен фрезеровкой, так что швов на нем вы не найдете. Съемными являются лишь две боковые грани, на каждую из которых выведено по одному разъему: USB и трехконтактный разъем для подключения налобного ободка с датчиками.

Стенки корпуса немного вогнуты, а углы сделаны очень острыми – новинка выглядит очень изящно и даже немного агрессивно. На столе NIA располагается на четырех резиновых ножках, приклеенных к нижней поверхности устройства.

Здесь же – в днище – вырезаны шесть продолговатых отверстий, обеспечивающих пассивную вентиляцию электронных компонент устройства. За этими отверстиями видна печатная плата с маркировкой «Technology powered by Breinfingers». Активной вентиляции не предусмотрено.

Налобный ободок подключается к основному блоку кабелем длиной 1,4 м. Учитывая длину интерфейсного USB-кабеля (еще 1,7 м), можно утверждать, что при игре кабели не ограничивают движений и можно позволить себе удалиться от монитора и системного блока достаточно далеко.

Ободок изготовлен из очень мягкого прорезиненного пластика. Концы его стягиваются, поэтому проблем с регулировкой размера возникнуть не должно. Другое дело качество изготовления ободка. Для того, чтобы разместить внутри три датчика и идущие от них провода, в ободке был сделан разрез, впоследствии запаянный. Но качество пайки, а также фиксация самих датчиков, увы, оставляют желать лучшего. Швы крайне неаккуратные, кругом видны заусенцы, а один из датчиков отклеился уже на второй день использования. Все это совсем не сочетается с высоким качеством изготовления основного блока и, по видимому, является следствием невысокой стоимости всего набора.

Налобный ободок сделан неразборным, ровно как и уставноленные в нем датчики – последние относятся к датчикам так называемого «сухого» типа, они не требуют смазывания гелем, используемым в качестве электролита для работы.

2024 bioaquansk.ru. Школа компьютерной грамотности.